
COT 6405 Introduction to Theory of
Algorithms

Topic 14. Graph Algorithms

11/7/2016 1

Elementary Graph Algorithms

• How to represent a graph?

– Adjacency lists

– Adjacency matrix

• How to search a graph?

– Breadth-first search

– Depth-first search

2

Graph Variations

• Variations:

– A connected graph has a path from every vertex to
every other

– In an undirected graph:

• edge (u,v) = edge (v,u)

• No self-loops

– In a directed graph:

• Edge (u,v) goes from vertex u to vertex v, notated uv

3

Graph Variations

• More variations:

– A weighted graph associates weights with either
the edges or the vertices

• E.g., a road map: edges weighted w/ distance

– A multigraph allows multiple edges between the
same vertices

• E.g., the call graph in a program (a function can get
called from multiple points in another function)

4

Graph G = (V, E)
• A graph G = (V, E)

– V = set of vertices, E = set of edges

• We will typically express running times in terms
of |E| and |V| (often dropping the ||’s)

– If |E|  |V|2 , the graph is dense

– If |E|  |V|, the graph is sparse

• If you know you are dealing with dense or sparse
graphs, we different data structures

– Dense graph  adjacency matrix

– Sparse graph  adjacency lists
5

22.1 Representing Graphs

• Assume V = {1, 2, …, n}

• An adjacency matrix represents the graph as a
n x n matrix A:

– A[i, j] = 1 if edge (i, j)  E (or weight of edge)
= 0 if edge (i, j)  E

6

Graphs: Adjacency Matrix

• Example:

7

Graphs: Adjacency Matrix

• Example:

8

Graphs: Adjacency Matrix

• How much storage does the adjacency matrix
require?

• A: O(V2)

• What is the minimum amount of storage
needed by an adjacency matrix representation
of an undirected graph with 4 vertices?

• A: 6 bits

– Undirected graph  matrix is symmetric

– No self-loops  don’t need diagonal
9

Graphs: Adjacency Matrix

• The adjacency matrix is a dense
representation

– Usually too much storage for large graphs

– But efficient for small graphs

• Most large interesting graphs are sparse

– E.g., planar graphs, in which no edges cross, have
|E| = O(|V|) by Euler’s formula

– For this reason the adjacency list is often a more
appropriate representation

10

Graphs: Adjacency List

• For each vertex v  V, store a list of vertices
adjacent to v

• The same example:

– Adj[1] = {2, 3}

– Adj[2] = {3}

– Adj[3] = {}

– Adj[4] = {3}

1

2 4

3

11

• Undirected

• Directed Graph

12

Graphs: Adjacency List

• How much storage is required?

– The degree of a vertex v = # incident edges

• Two edges are called incident, if they share a vertex

• Directed graphs have in-degree, out-degree

– For directed graphs, # of items in adjacency lists is
 out-degree(v) = |E|
takes (V + E) storage

– For undirected graphs, # items in adjacency lists is
 degree(v) = 2 |E|
also (V + E) storage

• So: Adjacency lists take O(V+E) storage
13

Graph Searching

• Given: a graph G = (V, E), directed or
undirected

• Goal: methodically explore every vertex and
every edge

• Ultimately: build a tree on the graph

– Pick a vertex as the root

– Choose certain edges to produce a tree

– Note: may build a forest if a graph is not
connected

14

Breadth-First Search (BFS)

• “Explore” a graph, turning it into a tree

– One vertex at a time

– Expand frontier of explored vertices across the
breadth of the frontier

• Builds a tree over the graph

– Pick a source vertex to be the root

– Find (“discover”) its children, then their children,
etc.

15

Breadth-First Search

• We associate vertices with “colors” to guide
the algorithm

– White vertices have not been discovered

• All vertices start out white

– Grey vertices are discovered but not fully explored

• They may be adjacent to white vertices

– Black vertices are discovered and fully explored

• They are adjacent only to black and gray vertices

• Explore vertices by scanning adjacency list of
grey vertices

16

Breadth-First Search
BFS(G, s) {

initialize vertices;

Q = {s}; // Q is a queue; initialize to s

while (Q not empty) {

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What does v.p represent?
What does v.d represent?

17

BFS: Initialization all nodes WHITE

















r s t u

v w x y

18

Breadth-First Search: enqueue s





0











r s t u

v w x y

sQ:

19

dequeue s; s is done; enqueue w
and r

1



0

1









r s t u

v w x y

wQ: r

20

dequeue w, enqueue t and x

1



0

1

2

2





r s t u

v w x y

rQ: t x

21

dequeue r, enqueue v

1

2

0

1

2

2





r s t u

v w x y

Q: t x v

22

dequeue t, enqueue u

1

2

0

1

2

2

3



r s t u

v w x y

Q: x v u

23

dequeue x, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

24

dequeue v, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

25

dequeue u, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

26

dequeue y, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

27

BFS: The Code Again
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What will be the running time?

28

Time analysis

• The total running time of BFS is O(V + E)

• Proof:

– Each vertex is dequeued at most once. Thus, total
time devoted to queue operations is O(V).

– For each vertex, the corresponding adjacency list
is scanned at most once. Since the sum of the
lengths of all the adjacency lists is Θ(E), the total
time spent in scanning adjacency lists is O(E).

– Thus, the total running time is O(V+E)

11/7/2016 29

BFS: The Code Again
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What will be the storage cost

in addition to storing the graph?

Total space used: O(V)

30

Breadth-First Search: Properties

• BFS calculates the shortest-path distance to
the source node

– Shortest-path distance (s,v) = minimum number
of edges from s to v, or  if v not reachable from s

• BFS builds breadth-first tree, in which paths to
root represent shortest paths in G

– Thus, we can use BFS to calculate a shortest path
from one vertex to another in O(V+E) time

31

Depth-First Search

• Depth-first search is another strategy for
exploring a graph

– Explore “deeper” in the graph whenever possible

– Edges are explored out of the most recently
discovered vertex v that still has unexplored edges

• Timestamp to help us remember who is “new”

– When all of v’s edges have been explored,
backtrack to the vertex from which v was
discovered

32

Depth-First Search: The Code

33

DFS(G)

{

for each vertex u ∈ G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u ∈ G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time

u.color = GREY

for each v ∈ G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}

Variables

• u. stores the predecessor of vertex u

• The first timestamp u.d records when u is first
discovered (and grayed)

• The second timestamp u.f records when the search
finishes examining u's adjacency list (and blackens v).

• These timestamps are used in many graph algorithms
and are generally helpful in reasoning about the
behavior of depth-first search

34

DFS Example: time = 0

source

vertex

35

DFS Example: time = 1

1 | | |

| | |

| |

source

vertex d f

36

DFS Example: time = 2

1 | | |

| | |

2 | |

source

vertex d f

37

DFS Example: time = 3

1 | | |

| | 3 |

2 | |

source

vertex d f

38

GREEDY: Always to go with white nodes if possible

DFS Example: time = 4

1 | | |

| | 3 | 4

2 | |

source

vertex d f

39

No where to go

DFS Example: time = 5

1 | | |

| 5 | 3 | 4

2 | |

source

vertex d f

40

GREEDY: Always to go with white nodes if possible

Based on timestamp, 2 is the newest at this moment

DFS Example: time = 6

1 | | |

| 5 | 63 | 4

2 | |

source

vertex d f

41

No where to go

DFS Example: time = 7 and 8

1 | 8 | |

| 5 | 63 | 4

2 | 7 |

source

vertex d f

42

DFS Example

1 | 8 | |

| 5 | 63 | 4

2 | 7 |

source

vertex d f

43

DFS Example: time = 9

1 | 8 | |

| 5 | 63 | 4

2 | 7 9 |

source

vertex d f

44

DFS Example: time = 10

1 | 8 | |

| 5 | 63 | 4

2 | 7 9 |10

source

vertex d f

45

No where to go

DFS Example: time = 11

1 | 8 |11 |

| 5 | 63 | 4

2 | 7 9 |10

source

vertex d f

46

DFS Example: time = 12

1 |12 8 |11 |

| 5 | 63 | 4

2 | 7 9 |10

source

vertex d f

47

DFS Example

1 |12 8 |11 13|

| 5 | 63 | 4

2 | 7 9 |10

source

vertex d f

48

Another
tree

DFS Example

1 |12 8 |11 13|

14| 5 | 63 | 4

2 | 7 9 |10

source

vertex d f

49

DFS Example

1 |12 8 |11 13|

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

50

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

51

Depth-First Search: running time

• Running time: O(|𝑉|2) because call DFS_Visit
on each vertex, and the loop over Adj[] can
run as many as |V| times.

• BUT, there is actually a tighter bound.

52

DFS: running time (cont’d)

• How many times will DFS_Visit() actually be
called?

– The loops on lines 1–3 and lines 5–7 of DFS take
time Θ(V), exclusive of the time to execute the
calls to DFS-VISIT.

– DFS-VISIT is called exactly once for each vertex v

– During an execution of DFS-VISIT(v), the loop on
lines 4–7 is executed |Adj[v]| times.

– σ𝑣∈𝑉 |𝐴𝑑𝑗[𝑣]| = Θ(𝐸)

– Total running time is Θ(𝑉 + 𝐸)
11/7/2016 53

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: Edge (u, v) is a tree edge if v was first
discovered by exploring edge (u, v)

54

DFS Example: Tree edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

Tree edges

55

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: encounter new vertex

– Back edge: from descendent to ancestor

56

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

Tree edges Back edges

57

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: encounter new vertex

– Back edge: from descendent to ancestor

– Forward edge: from ancestor to descendent

• Not a tree edge, though

58

DFS Example: Forward edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

Tree edges Back edges Forward edges

59

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: encounter new vertex

– Back edge: from descendent to ancestor

– Forward edge: from ancestor to descendent

– Cross edge: between subtrees

60

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d f

Tree edges Back edges Forward edges Cross edges

61

DFS: Different Types of edges

• DFS introduces an important distinction
among edges in the original graph:

– Tree edge: encounter new vertex

– Back edge: from a descendent to an ancestor

– Forward edge: from an ancestor to a descendent

– Cross edge: between a tree or subtrees

• Note: tree & back edges are important

– most algorithms don’t distinguish forward & cross

62

Directed Acyclic Graphs

• A directed acyclic graph (DAG) is a directed
graph with no directed cycles:

63

DFS and DAGs
• A directed graph G is acyclic i.f.f. a DFS of G yields

no back edges

– If G is acyclic: no back edges

– If G has a cycle, there must exist a back edge

• How would you modify the DFS code to detect
cycles?

– Detect back edges

– edge (u, v) is a back edge if and only if d[v] < d[u] <
f[u] < f[v]

• u is the descendent

• v is the ancestor 64

Run DFS to find whether a graph has a cycle

DFS(G)

{

for each vertex u  G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u  G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time

u.color = GREY

for each v  G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}

65

DFS and Cycles

• What will be the running time?

• A: O(V+E)

• We can actually determine if cycles exist in
O(V) time:

– In an undirected acyclic tree, |E|  |V| - 1

– So, count the number of edges:

• if ever see |V| distinct edges, we must have seen a
back edge along the way

66

