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Elementary Graph Algorithms

• How to represent a graph?

– Adjacency lists

– Adjacency matrix

• How to search a graph? 

– Breadth-first search

– Depth-first search
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Graph Variations

• Variations:

– A connected graph has a path from every vertex to 
every other

– In an undirected graph:

• edge (u,v) = edge (v,u)

• No self-loops

– In a directed graph:

• Edge (u,v) goes from vertex u to vertex v, notated uv
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Graph Variations

• More variations:

– A weighted graph associates weights with either 
the edges or the vertices

• E.g., a road map: edges weighted w/ distance

– A multigraph allows multiple edges between the 
same vertices

• E.g., the call graph in a program (a function can get 
called from multiple points in another function)
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Graph G = (V, E)
• A graph G = (V, E)

– V = set of vertices, E = set of edges 

• We will typically express running times in terms 
of |E| and |V| (often dropping the ||’s)

– If |E|  |V|2 , the graph is dense

– If |E|  |V|, the graph is sparse

• If you know you are dealing with dense or sparse 
graphs, we different data structures 

– Dense graph  adjacency matrix

– Sparse graph  adjacency lists
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22.1 Representing Graphs

• Assume V = {1, 2, …, n}

• An adjacency matrix represents the graph as a 
n x n matrix A:

– A[i, j] = 1 if edge (i, j)  E   (or weight of edge)
= 0 if edge (i, j)  E
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Graphs: Adjacency Matrix

• Example:
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Graphs: Adjacency Matrix

• Example:
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Graphs: Adjacency Matrix

• How much storage does the adjacency matrix 
require?

• A: O(V2)

• What is the minimum amount of storage 
needed by an adjacency matrix representation 
of an undirected graph with 4 vertices?

• A: 6 bits

– Undirected graph  matrix is symmetric

– No self-loops  don’t need diagonal
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Graphs: Adjacency Matrix

• The adjacency matrix is a dense 
representation

– Usually too much storage for large graphs

– But efficient for small graphs

• Most large interesting graphs are sparse

– E.g., planar graphs, in which no edges cross, have 
|E| = O(|V|) by Euler’s formula

– For this reason the adjacency list is often a more 
appropriate representation
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Graphs: Adjacency List

• For each vertex v  V, store a list of vertices 
adjacent to v

• The same example:

– Adj[1] = {2, 3}

– Adj[2] = {3}

– Adj[3] = {}

– Adj[4] = {3}

1

2 4

3
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• Undirected

• Directed Graph
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Graphs: Adjacency List

• How much storage is required?

– The degree of a vertex v = # incident edges

• Two edges are called incident, if they share a vertex

• Directed graphs have in-degree, out-degree

– For directed graphs, # of items in adjacency lists is
 out-degree(v) = |E|
takes (V + E) storage    

– For undirected graphs, # items in adjacency lists is
 degree(v) = 2 |E|    
also (V + E) storage

• So: Adjacency lists take O(V+E) storage
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Graph Searching

• Given: a graph G = (V, E), directed or 
undirected

• Goal: methodically explore every vertex and 
every edge

• Ultimately: build a tree on the graph

– Pick a vertex as the root

– Choose certain edges to produce a tree

– Note: may build a forest if a graph is not 
connected
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Breadth-First Search (BFS)

• “Explore” a graph, turning it into a tree

– One vertex at a time

– Expand frontier of explored vertices across the 
breadth of the frontier

• Builds a tree over the graph

– Pick a source vertex to be the root

– Find (“discover”) its children, then their children, 
etc.
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Breadth-First Search

• We associate vertices with  “colors” to guide 
the algorithm

– White vertices have not been discovered

• All vertices start out white

– Grey vertices are discovered but not fully explored

• They may be adjacent to white vertices

– Black vertices are discovered and fully explored

• They are adjacent only to black and gray vertices

• Explore vertices by scanning adjacency list of 
grey vertices
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Breadth-First Search
BFS(G, s) {

initialize vertices;

Q = {s}; // Q is a queue; initialize to s

while (Q not empty) {    

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What does v.p represent?
What does v.d represent?
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BFS: Initialization all nodes WHITE

















r s t u

v w x y
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Breadth-First Search: enqueue s





0











r s t u

v w x y

sQ:
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dequeue s; s is done; enqueue w 
and r

1



0

1









r s t u

v w x y

wQ: r
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dequeue w, enqueue t and x 

1



0

1

2

2





r s t u

v w x y

rQ: t x
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dequeue r, enqueue v

1

2

0

1

2

2





r s t u

v w x y

Q: t x v
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dequeue t, enqueue u

1

2

0

1

2

2

3



r s t u

v w x y

Q: x v u
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dequeue x, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y
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dequeue v, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y
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dequeue u, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y
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dequeue y, no enqueue

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

27



BFS: The Code Again
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {    

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What will be the running time?
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Time analysis

• The total running time of BFS is O(V + E)

• Proof: 

– Each vertex is dequeued at most once. Thus, total 
time devoted to queue operations is O(V). 

– For each vertex, the corresponding adjacency list 
is scanned at most once. Since the sum of the 
lengths of all the adjacency lists is Θ(E), the total 
time spent in scanning adjacency lists is O(E). 

– Thus, the total running time is O(V+E)
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BFS: The Code Again
BFS(G, s) {

initialize vertices;

Q = {s};

while (Q not empty) {    

u = Dequeue(Q);

for each v  G.adj[u] {

if (v.color == WHITE)

v.color = GREY;

v.d = u.d + 1;

v.p = u;

Enqueue(Q, v);

}

u.color = BLACK;

}

}

What will be the storage cost 

in addition to storing the graph?

Total space used: O(V)
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Breadth-First Search: Properties

• BFS calculates the shortest-path distance to 
the source node

– Shortest-path distance (s,v) = minimum number 
of edges from s to v, or  if v not reachable from s

• BFS builds breadth-first tree, in which paths to 
root represent shortest paths in G

– Thus, we can use BFS to calculate a shortest path 
from one vertex to another in O(V+E) time
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Depth-First Search

• Depth-first search is another strategy for 
exploring a graph

– Explore “deeper” in the graph whenever possible

– Edges are explored out of the most recently 
discovered vertex v that still has unexplored edges

• Timestamp to help us remember who is “new”

– When all of v’s edges have been explored, 
backtrack to the vertex from which v was 
discovered
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Depth-First Search: The Code

33

DFS(G)

{

for each vertex u ∈ G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u ∈ G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time 

u.color = GREY

for each v ∈ G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}



Variables

• u. stores the predecessor of vertex u

• The first timestamp u.d records when u is first 
discovered (and grayed)

• The second timestamp u.f records when the search 
finishes examining u's adjacency list (and blackens v). 

• These timestamps are used in many graph algorithms 
and are generally helpful in reasoning about the 
behavior of depth-first search
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DFS Example: time = 0

source

vertex
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DFS Example: time = 1

1 |  |  |  

|  | |  

|  |  

source

vertex d      f
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DFS Example: time = 2

1 |  |  |  

|  | |  

2 |  |  

source

vertex d      f
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DFS Example: time = 3

1 |  |  |  

|  | 3 |  

2 |  |  

source

vertex d      f

38

GREEDY: Always to go with white nodes if possible



DFS Example: time = 4

1 |  |  |  

|  | 3 | 4

2 |  |  

source

vertex d      f
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No where to go



DFS Example: time = 5 

1 |  |  |  

|  5 |  3 | 4

2 |  |  

source

vertex d      f
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GREEDY: Always to go with white nodes if possible

Based on timestamp, 2 is the newest at this moment



DFS Example: time = 6

1 |  |  |  

|  5 | 63 | 4

2 |  |  

source

vertex d      f
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No where to go



DFS Example: time = 7 and 8

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 |  

source

vertex d      f
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DFS Example

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 |  

source

vertex d      f
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DFS Example: time = 9

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 9 |  

source

vertex d      f
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DFS Example: time = 10

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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No where to go



DFS Example: time = 11

1 |  8 |11 |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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DFS Example: time = 12

1 |12 8 |11 |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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DFS Example

1 |12 8 |11 13|  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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Another 
tree



DFS Example

1 |12 8 |11 13|  

14|  5 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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DFS Example

1 |12 8 |11 13|  

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f
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Depth-First Search: running time

• Running time: O(|𝑉|2) because call DFS_Visit
on each vertex, and the loop over Adj[] can 
run as many as |V| times.

• BUT, there is actually a tighter bound.
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DFS: running time (cont’d)

• How many times will DFS_Visit() actually be 
called?

– The loops on lines 1–3 and lines 5–7 of DFS take 
time Θ(V), exclusive of the time to execute the 
calls to DFS-VISIT. 

– DFS-VISIT is called exactly once for each vertex v

– During an execution of DFS-VISIT(v), the loop on 
lines 4–7 is executed |Adj[v]| times.

– σ𝑣∈𝑉 |𝐴𝑑𝑗[𝑣]| = Θ(𝐸)

– Total running time is Θ(𝑉 + 𝐸)
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: Edge (u, v) is a tree edge if v was first 
discovered by exploring edge (u, v)
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DFS Example: Tree edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f

Tree edges
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: encounter new vertex 

– Back edge: from descendent to ancestor
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f

Tree edges Back edges
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: encounter new vertex 

– Back edge: from descendent to ancestor

– Forward edge: from ancestor to descendent

• Not a tree edge, though
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DFS Example: Forward edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f

Tree edges Back edges Forward edges
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: encounter new vertex 

– Back edge: from descendent to ancestor

– Forward edge: from ancestor to descendent

– Cross edge: between subtrees
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex d      f

Tree edges Back edges Forward edges Cross edges
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DFS: Different Types of edges

• DFS introduces an important distinction 
among edges in the original graph:

– Tree edge: encounter new vertex 

– Back edge: from a descendent to an ancestor

– Forward edge: from an ancestor to a descendent

– Cross edge: between a tree or subtrees

• Note: tree & back edges are important

– most algorithms don’t distinguish forward & cross
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Directed Acyclic Graphs

• A directed acyclic graph (DAG) is a directed 
graph with no directed cycles:
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DFS and DAGs
• A directed graph G is acyclic i.f.f. a DFS of G yields 

no back edges

– If G is acyclic: no back edges 

– If G has a cycle, there must exist a back edge

• How would you modify the DFS code to detect 
cycles?

– Detect back edges

– edge (u, v) is a back edge if and only if d[v] < d[u] < 
f[u] < f[v]

• u is the descendent

• v is the ancestor 64



Run DFS to find whether a graph has a cycle

DFS(G)

{

for each vertex u  G.V

{

u.color = WHITE

u. = NIL

}

time = 0

for each vertex u  G.V

{

if (u.color == WHITE)

DFS_Visit(G, u)

}

}

DFS_Visit(G, u)

{

time = time + 1

u.d = time 

u.color = GREY

for each v  G.Adj[u]

{

if (v.color == WHITE)

v. = u

DFS_Visit(G, v)

}

u.color = BLACK

time = time + 1

u.f = time

}
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DFS and Cycles

• What will be the running time?

• A: O(V+E)

• We can actually determine if cycles exist in 
O(V) time:

– In an undirected acyclic tree, |E|  |V| - 1 

– So, count the number of edges: 

• if ever see |V| distinct edges, we must have seen a 
back edge along the way
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